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Finite-size scaling is studied for the three-state Ports model on a simple cubic 
lattice. We show that the specific heat and the magnetic susceptibility scale 
accurately as the volume. The correlation length exhibits behaviors expected for 
a genuine first-order transition; the one extracted from the unsubtracted correla- 
tion function shows a characteristic finite-size behavior, whereas the physical 
correlation length that characterizes the first excited state stays at a finite value 
and is discontinuous at the transition point. 
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1. I N T R O D U C T I O N  

The Potts model ~1~ (see ref. 2 for a review) has attracted the interest of 
statistical physicists for many years because it represents the simplest 
extension of the Ising model. In particular, the three-state (q = 3) Potts 
model in three dimensions (d=  3) is one of the most interesting cases in 
that it is marginal in several respects. According to the Landau theory, (3) 
the q = 3 Potts model is predicted to have a first-order phase transition 
regardless of the value of d. In d = 2 ,  however, the model has been 
proven (4) to have a second-order phase transition. On the other hand, for 
d.~ 4, we expect with confidence that the mean field result is valid and the 
transition is first order. The case of d =  3 is subtle, just in between these 
two cases, for which large fluctuations may still occur in the vicinity of the 
transition point, while a first-order transition is typically characterized by 
the absence of critical fluctuations. 

The order of the transition of the d =  3 three-state Potts model has 
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been studied by a variety of methods (2~ and a general consensus has been 
reached that it possesses a weak first-order transition. This mainly came 
from Monte Carlo studies (5 s) of the system, which found a small but clear 
jump of the internal energy and the order parameter at the transition point. 
The finite-size behavior of observables from one such study (7) was puzzling, 
however, as their behavior indicated a correlation length exponent 
v = 0.44).5 and the observables showed a growth consistent with a power- 
law divergence; furthermore, it was reported that critical indices of various 
thermodynamic quantities are subject to hyperscaling with the above 
correlation length exponent v. These are the features generally expected for 
a second-order transition, and some series analyses (9) indeed favored this 
alternative. The authors of ref. 5 also found evidence for a second-order 
fixed point in the metastable region in their renormalization group analysis. 
Several recent numerical studies, (1~ however, have concluded that the 
correlation length is finite at the transition point, though it is quite large 
(~c~ 10). This latter feature may be regarded as reminiscent of large 
fluctuations in a system close to criticality. 

In this paper, we report a high-statistics Monte Carlo study of the 
q = 3 Potts model in three dimensions aimed at a detailed understanding of 
the nature of its transition. In particular, we examine for this subtle case 
the finite-size scaling behavior, which is generally well understood both 
for second-order (a2'13) and first-order (~4 19) phase transitions. A general 
obstacle for such a finite-size scaling analysis is that one needs a fine mesh 
of temperature and high statistics to trace out the temperature dependence 
of observables, which become progressively singular with an increasing 
system size. We have circumvented these problems with a recently 
developed high-speed vector computer and with a use of a technique utilizing 
the histogram of the spectral density of the states. This method was 
proposed by McDonald and Singer, (2~ and its advantages were 
emphasized more recently by Ferrenberg and Swendsen. (21) We used 
lattices of size varying from L = 163 to 643 with typically one to ten million 
sweeps at each temperature. In addition to the bulk quantities such as the 
order parameter and susceptibility commonly studied in finite-size scaling 
analyses, we investigated the behavior of the correlation length. It exhibits 
quite distinctive finite-size behaviors depending upon whether the phase 
transition is first or second order. We also examine the question of whether 
the correlation length for a first-order phase transition diverges or not at 
the transition point. 

As a comparative example we have made a finite-size scaling analysis 
for the three-dimensional Ising model, which is known to have a typical 
second-order phase transition. We used lattices of size L =  1648  with 
moderate statistics. 
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In Section 2 we describe the formalism and method of simulation. We 
give a very brief review in Section 3 of the finite-size scaling of thermo- 
dynamic quantities to clarify the goal of our analysis, and the results are 
presented in Section 4. The finite-size behavior of the correlation length is 
discussed in Section 5. Section 6 is devoted to our conclusions. 

2. FORMULATION AND SIMULATION 

The Potts model is given by the Hamiltonian 

3 n=-~ E (&~-l) (1) 
~i,j) 

where (i, j )  is the sum over the nearest neighbor spin pairs and the spin 
variable a i takes q = 3 states. The statistical system is defined by 

Z = exp( - fill) (2) 

with fl the reverse temperature lIT. The Hamiltonian (1) is also written as 

H =  - ~ ~Re(s i s~) -  1] (3) 
( i , j )  

with a Z 3-valued spin variable si. 
We work on a simple cubic lattice of size L 3 = Vwith periodic boundary 

condition imposed for all directions. For  updating the configuration we use 
the heat-bath algorithm, with a speed of 24 million spin updates per second 
on an HITAC $820/80. 

We measure the internal energy per link 

E= (H) /3V (4) 

and the specific heat 

8E 1 
C 8T 3VT ~ ( ( H ~ ) -  (H)~) (5) 

We consider two definitions of t h e  order parameter. The first is the 
conventional one used in ref. 6, 

~ l = R e  ~ si (6) 

where Re stands for the projection onto the nearest Z(3) axis on the 
complex plane; given a complex number z, Re z is equal to Re z, 
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Re[exp(-i2rc/3)z],  or Re[exp(i2n/3)z], depending upon whether the 
phase of z falls within the interval (-re/3,  ~/3), (re/3, rt), or (-Tr, -re/3). 
We also use the definition of the order parameter 

4 2 = R e  -~ si (7) 

with Re the normal real part. The latter order parameter appears more 
natural, in that no artificial procedure is involved in the definition. We 
discuss the merits and demerits of these two definitions in Section 4. The 
susceptibilities are defined by 

)~1--'~ V ( <  ~ 2 )  - -  <~[}1) 2) (8 )  

and 
Z2 = V((q~2 2 ) - ( ~ 2 )  2) (9) 

We also measure the unsubtracted zero-momentum projected correlation 
function 

C(z) = ( O ( z ) o ( 0 ) *  > (lo) 

with 

o ( z ) = r  2 y~ s, (11) 
z e (x, y) plane at z 

the average of L z spins on a transverse plane located at z. In actually 
evaluating (10), we use the cubic symmetry and take an average over three 
directions to increase statistics. 

For  the Ising model we take the standard normalization 

H =  - ~ ( s , s j - 1 )  (12) 
(i,J) 

with s i=  +1, and the system is defined by (2). 
In order to calculate physical observables in the vicinity of the transi- 

tion point for continuous values of the temperature, we have extensively 
used the histogram method for the spectral density of states. (2~ This 
method is based on the identity 

P(ri, H) = P(rio, H) exp[ -([1 - rio)H] 

valid for the distribution of the energy 

(13) 

P(rio, H) = N(H) exp( - rio H) (14) 
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with H the Hamiltonian and N(H)  the number of configurations with a 
given value of H, and a simple realization that a Monte Carlo simulation 
at a certain fl =/~o gives an estimate of the distribution P(flo, H). Once a 
good estimate of P is obtained from a long Monte Carlo run, the average 
of the action at nearby r be calculated with the modified weight (13). 

It is straightforward to extend this spectral density method for 
evaluating not only the action itself, but also a set of other physical 
valuables O1,..., O,;  one defines the weight in a multiparameter space 
which refers to O~,..., O~, i.e., by replacing P(fl, H) and N(H)  with 
P(/~, H, O1,..., O,) and N(H, 01 ..... 0 , )  in (13)-(14). 

For random numbers we used the M-series (22) based on the primitive 
polynomial x 25~ + x ~~ + 1 with a period of 225o - 1. The error analysis was 
made with the jackknife method. (23~ In particular, the error propagation in 
the spectral density method was estimated by applying it to the distribution 
of P dividing the run into subsamples. 

3. F I N I T E - S I Z E  S C A L I N G  

Conventional arguments (12' 13) for finite-size scaling for a second-order 
transition start with the assumption that the singular part of the free energy 
depends only on the lattice size L and the correlation length ~. It then 
follows that the peak height of the specific heat and the susceptibility scale as 

C(Tc(L), L)  ~ L ~/v (15) 

z(Tc(L),  L) ~ L ~/~ (16) 

with To(L) the "pseudo-critical point," e.g., the peak position of C or 7~. 
For the width of the peak F(L)  and the shift of the critical coupling 
T ~ ( L ) -  T ~ ( ~ )  we expect 

r ( L ) ~ L  -I/~ (17) 

Tc(L)- T c ( ~ ) ~ L  -1/~ (18) 
for both C and •. 

At a first-order transition, on the other hand, the physical correlation 
length ~ is expected to remain finite. Once L exceeds r thermodynamic 
quantities at T~(L) are expected r to depend only on the volume 
V = L  a, 

C(Tc(L), L)  ~ L a (19) 

Z(Tc(L), L)  ,.~ L d (20) 

F(L)  ~ L -d  (21) 

To(L) - T c ( ~ )  ~ L -d  (22) 
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This is a natural result if we remember that the singular behavior at a first- 
order transition is caused by the coexistence of multiple phases, which 
produces a delta-function singularity in the limit L --+ oo. It is interesting to 
note that the scaling relations (19)-(22) coincide with (15)-(18) if we set 
v= 1/d and c~=y= 1. Thus, in a finite-size scaling analysis, first- and 
second-order transitions can be treated in a same manner; the values of 
exponents differentiate the order of the transition. 4 

In a practical evaluation, we found that the inclusion of a subleading 
constant term often gives a better fit for first-order transitions. We then fit 
the data by the form a v e +  c for the Potts model. For  the Ising model we 
took only the leading term a V ~, since our statistics is not enough to discuss 
the subleading terms. 

We add a remark here concerning the range of applicability of the 
spectral density method. It has been argued (21) that the method allows one 
to cover the entire critical region with a single simulation. From (13) the 
interval of fi accessible is estimated as Ifl-fiol ~ O ( A H - I ) ,  with AH the 
width of the energy distribution at the point of simulation rio. Since 
AH.. .(CLd) 1/2 with C the specific heat, one obtains from (15) and the 
hyperscaling relation that I f i -  rio] ~< O(L-,/v) for a second-order transition, 
and <.O(L -a) from (19) for a first-order transition. We indeed found that 
a single simulation of O(106-107) sweeps suffices for the Potts model with 
the width of the critical region 6Tc/T~ ~ 0.001 at L = 48 to cover the whole 
critical region. We obtained our result from a single run, with other runs 
used to check its reliability, however. On the other hand, for the Ising 
model in three dimensions with a second-order transition, which has a 
much wider critical region of order aTe~To ~ 0.01 at L = 48, a simulation of 
similar statistics did not yield satisfactory curves of observables beyond 
6T/T~O.O05 at L = 4 8 .  Much higher statistics appears to be needed to 
correctly sample the edges of the energy distribution in this case. To 
calculate observables at fi, we therefore combined two neighboring runs at 
flo~ and f102 with tim < fl < flo2, assigning a weight 

exp ~-c2 (. -fi--fl~ ~2], i=1,2 
L \/~o, -/~o2// 

with c = 2 - 3  in our Ising model simulations, so that resulting curves 
smoothly interpolate the data points. 

4 It has been argued (14) that this similarity is caused by the fact that first-order transitions 
are governed by discontinuity fixed points. The existence of such fixed points has been 
questioned, however, by several authors ~5'24'zs) for the temperature-driven first-order phase 
transition. 
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4. RESULT 

4.1. Basic Characteristics of the Runs 

The Monte Carlo runs we made are summarized in Table I. For all 
the runs except for those on a 643 lattice with 1 x 10 6 sweeps, we see 
flipflops of the system between the disordered and ordered states. Examples 
are shown in Fig. 1 for the order parameter  (q51 ). The distinction between 
the two states becomes more conspicuous with increasing volume. In 
particular, the duration of a phase rapidly increases with V. We plot in 
Fig. 2 the average number of sweeps n; between a flip and a flop as a 
function of the volume. This figure shows that it increases exponentially. 
This is what we expect for a first-order phase transition, because the free 
energy barrier is proport ional  to V. 

4.2. internal Energy and Specific Heat 

In Figs_. 3 and 4 we show the internal energy E and the specific heat 
divided by the volume C/V as functions of T for various lattice sizes. 

Tablel .  Statistics of Monte  Carlo Runs in Units of 10 s Sweeps 

fl L ~ 1 6  L = 2 2  L = 2 4  L = 2 6  L = 3 0  L = 3 6  L = 4 2  L = 4 8  L = 6 4  

Potts model 

0.36685 
0.36690 
0.36695 
0.36700 
0.36701 
0.367025 
0.36705 

Ising model 

0.215 
0.218 
0.220 
0.22166 
0,223 
0,224 
0,225 

1 
10 1 

4 4 
1 10 4 4 

1 1 2 
1 1 2 
1 1 2 2 
1 1 2 2 
1 1 2 2 

2 2 
2 

5 
5 1 a 

l a + l b + 2  
Ib 

a Disorder start. 
b Order start. 
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Fig. 1. Time history of the order parameter ( ~ t ) .  The lattice size and the value of fl are 
listed in figure. 
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Fig. 2. Average number  of sweeps np between a flip and a flop as a function of the volume. 
All the numbers  were estimated at # =0.36700 except for L = 26 (# = 0.36690) and L = 36 
(# = 0.36695). 
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T 

Fig. 3. Internal energy E as a function of T for various lattice sizes. The solid lines show 
results of the spectral density method using the data represented by the solid symbols as input. 
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Fig. 4. 

( xlO -3) 
1 . 2 5 ~  

 .ooL- �9 g -  ~ - - - ~  ,o 24:  

0 . 2 5 ~ n  

v2.720 2.722 2.724 2.726 2.728 2,7:50 
T 

Specific heat normalized by the volume C/V as a function of T for various lattice 
sizes. The meaning of the lines and symbols is the same as in Fig. 3. 

Figure 3 shows that the variation of the internal energy becomes more 
abrupt as V increases, indicating that a step-function-type singularity will 
develop in the infinite-volume limit. 

A more quantitative analysis is made in Fig. 4, where we see that the 
behavior approaches a delta-function-type singularity as V increases. We 
display in Fig. 5 the height Cma x and the inverse of the width 6Tc11/2, 
defined as the full-width at half-maximum, as functions of the volume (see 
Table II for numerical data). This figure already reveals that Cmax and 
6Tclm scale linearly with the volume very well. We have tested the quality 
of the linear behavior of Cma x and 6Tc,~/2 by a three-parameter fit of the 
form aV ~ + c as well as the two-parameter fit with a = 1. The result is given 
in the first two parts of Table III and in Fig. 5, which nicely confirms the 
linear dependence. In Cm,x we note an appreciable constant, which is 
known also in other models. ~ 

It is interesting to compare this result with that for the three- 
dimensional Ising model. We present E and C for this case in Figs. 6 and 7, 
respectively. These figures show a marked contrast with the corresponding 
ones for the Potts model; in particular, in Fig. 6 we note that the 
asymptotic curve is approached from below without mutual crossings of 
curves for different size, in contrast to Fig. 3 for the Potts model. From 
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Fig. 5. (a) Peak height of the specific heat C as a function of the volume. The solid line 
represents the two-parameter fit given in the first part of Table III. (b) Inverse of the peak 
width of C as a function of the volume. The solid line represents the two-parameter fit given 
in the second part of Table III. 
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Fig. 7 we may extract the volume dependence of Cmax (see Fig. 8). Our 
estimates for the critical exponents are given in the last part of Table III. 

We have also estimated the reduced cumulant Vr proposed by 
Challa et a/.(191: 

< E 4 >  

VL=I  3 (E2)2 (23) 

This variable is expected to approach 2/3 if the probability distribution of 
energy is described by a single Gaussian form, as for the case of a second- 

Table Ill 

Peak height" 

(7 a C 

Cma x 1.04(5) 0.0004(3) 4(2) 
Zl . . . .  1.15(4) 0.005(2) 40(40) 
X2 . . . .  0.95(9) 0.002(2) 12(5) 

Cm~ ~ l 0.000679(9) 2.6(4) 
~.max 1 0.03150(29) - 1 5 7  (12) 
Z2 . . . .  1 0.000973(20) 14.4(9) 

Peak Width b 

O" a C 

6Tc1~/2 !.07(4) 0.0037(18) - 3 ( 1 7 )  
~T - j  1.06(4) 0.0043(18) 0(15) ZI, 1/2 

6 T  -1  1.09(6) 0.003(2) - 40 (20 )  )~2, I/'2 

dTc.I1/2 1 0.00899(9) - 34(4) 
6T  -~ 1 0.00911(8) - 2 6 ( 3 )  ~1,1/2 

~T -1 1 0.00876(12) - 7 9 ( 6 )  312 1/2 

Ising model '~ 

0 0" a 

Cma x 0.I0(1) 0.34 (2) 
Z ~  0.67(1) 0.25 ( i )  
6T2~. 2 0.52(1) 0.069(3) 
2 / 3 - - V  L --0.85(1) 14 (1) 

Results of the three parameter  fit of the form a v e 1  - c for the peak height using the data for 
L = 30-48. Also shown are the two-parameter fits with ~r = 1. 

b Same as in the first part of the table, for the inverse of the peak width cST- ~ = a V ~ + c. 
c Results of the two-parameter fit of the form O = a V  ~ for the Ising model using the data for 

L = 16-48. 
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Fig.  6. I n t e r n a l  e n e r g y  E for  the  I s i ng  m o d e l  as  a f u n c t i o n  o f  T for  v a r i o u s  l a t t i ce  sizes. T h e  

sol id  l ines a re  a n  i n t e r p o l a t i o n  o f  t he  d a t a  p o i n t s  by  t he  spec t r a l  d e n s i t y  m e t h o d ,  

1 . 2  ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' 

i.O_ ~ /~8  C d:3 Ising 

0 , 8  1- - ~  2 4 ~  ~ �9 L = 4 8  : -  
0.6- 

0.4 

0.2 

0 , I I [ I , I , , , , I i i i , I , I I I I , 

4.45 4.50 4.55 4.60 4.65 
T 

Fig.  7, Specif ic  h e a t  for  t he  I s i ng  m o d e l  as  a f u n c t i o n  o f  T for  v a r i o u s  la t t i ce  sizes. T h e  

m e a n i n g  o f  t he  l ines is the  s a m e  as  in Fig.  6. 
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Fig. 8. Peiak height of the specific heat C for the Ising model as a function of the volume. 
The solid line represents the two-parameter fit given in the last part of Table III. 

order transition, or otherwise it deviates from this value. Therefore, this 
variable is expected to give an interesting indicator for the order of a phase 
transition. In Figs. 9a and 9b we plot VL as a function of T for the Ports 
and Ising models. Figure 10 shows the peak values of 2/3 - V L as functions 
of V (see Table II for numerical values). One clearly observes that VL, n~in 
for the Ports model approaches a finite value, whereas it vanishes for the 
Ising case as V ~  ~ .  We estimate that 

lim V c . . . .  = 0 . 6 4 6 0 ( 2 )  ( 2 4 )  
L+ac, 

for the Potts model, and 

2/3- rL ,  mi n OC V -G, ~ = 0 . 8 5 ( 1 )  (25) 

for the Ising model. 

4 . 3 .  S u s c e p t i b i l i t y  

The order parameters ( ~ 1 )  and { ~2 ) and the corresponding suscepti- 
bilities Z1 and Z2 divided by V are presented in Figs. 11 and 12 as functions 
of T for various lattice sizes. We see that the behavior of the order 

822/59/5-6-21 
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Fig. 9. (a) Reduced cumulant  VL as a function of T for various lattice sizes. The meaning 
of the lines and symbols is the same as in Fig. 3. (b) Same as (a), for the Ising model. The 
meaning of the lines is the same as in Fig. 6. 
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Fig. 10. Peak values of 2/3- V L as a function of the volume for both the Ports and 
Ising models. 

parameters is similar to that of E, and the susceptibilities similar to C; the 
curves of ( 4 i )  for different sizes cross each other at an almost fixed point, 
and those of Zi exhibit progressively more conspicuous peaks as V 
increases. The numerical values of the peak heights Z~. max and the width 
5Tx~,1/2 are listed in Table II. We apply again a three- as well as 
two-parameter fits to these quantities. The results are depicted in Fig. 13 
and are also tabulated in the first two parts of Table III. The inverse of the 
peak width 5T~1I/2 increases linearly with the volume. We note, however, 
that the curve for the peak height for Z1 slightly deviates from a linear 
behavior. This may be attributed to the rather artificial definition of 41, for 
which we separated the complex plane into three parts. For  the more 
naturally defined 42, the peak height beautifully scales linearly. This 
behavior is again contrasted with a second-order case of the Ising model; 
see Fig. 14 for the shape of ( 4 )  - (](1/V)Y~si[) and Z --- V ( ( 4 2 )  - ( 4 ) 2 ) ,  
and Fig. 15 for the height and width for several volumes. Estimates of the 
critical exponents are listed in the last part of Table III. 
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Table IV. Critical Temperature Defined As the Position of the Peak 
of the Specific Heat,  Susceptibilit ies, and V L for Various Lattice Sizes 

L C Zl Z2 VL 

22 2.72461(21) 2.72565(23) 2.72327(19) 2.72638(22) 
24 2.72487(6) 2.72568(6) 2.72379(5) 2.72622(6) 
26 2.72491(17) 2.72551(18) 2.72411(15) 2.72595(17) 
30 2.72505(7) 2.72539(8) 2.72456(6) 2.72570(7) 
36 2.72486(6) 2.72501(6) 2,72465(5) 2.72522(6) 
42 2.72485(6) 2.72491(6) 2.72475(6) 2.72507(6) 
48 2.72471(6) 2.72474(5) 2.72465(5) 2.72485(5) 

4.4. The Critical Temperature of the Potts Model 

Definition of the critical temperature is ambiguous on a finite lattice. 
We define it here expediently as the position of the peak of the specific 
heat, the susceptibilities, and VL. The critical temperature Tc(V) estimated 
with this definition is given in Table IV, and is displayed in Fig. 16 as a 
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( V 1483 )-i 
Fig. 16. Critical temperature defined as the peak position of the specific heat, susceptibilities, 

and V L as a function of the inverse volume. 
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function of the inverse volume. We observe that T~(V), which scatters over 
a considerably wide range of values for a smaller volume, converges 
remarkably well to a single value as V ~  oo. Allowing for the downward 
trend seen for the two largest lattice sizes, we estimate the critical 
temperature at the infinite volume to be 

T c ( ~ )  = 2.7246(2) [flc(oo) = 1/Tc(oo) = 0.36703(3)-1 (26) 

It is worth noting that the size dependence of Tc(V) is not quite linear in 
V ~ as presumed in a simple model of a first-order phase transition, s but 
actually shows a more complex behavior [see, e.g., T~(V) from Cm~ and 
/~z . . . .  ]. It is obvious that, if one estimates T~(oo) by a linear extrapolation 
from the data for L ~< 30, one would obtain an incorrect estimate of T~(oo). 

4.5. Summary 

From the first two parts of Table I I I  we extract the "critical exponent" 
for the q = 3 Ports model to be 6 

~/v = 3.12(15), v = 0.312(12) [1/v = 3.21(12)] 

~/v = 2.9(3) (27) 

For the three-dimensional Ising model we obtain 

c(v = 0.30(3), v = 0.64(1), 7Iv = 2.01(3) (28) 

These indices are compared with the estimates of earlier work7: 

O:/v = 0 .175 ,  (26) 0 . 1 6 ( 3 )  (297 

v = 0.629(4), (27) 0.6295(10), (28) 0.634(10), (29~ 0.6303(14) (3~ (29) 

7/v = 1 .98 (2 ) ,  (26) 1.964(3) (31~ 

The values of (27) show that the q = 3 Potts model obeys finite-size scaling 
precisely as expected for a genuine first-order phase transition. 

5. CORRELATION LENGTH 

In this section we study the finite-size behavior of the correlation 
length 4. We present our result in terms of a mass gap defined by the 

s This prediction is based on a double Gaussian model, ugl and it may be disturbed if there 
is a small background part. 

6This may  be compared with c~=0.52 _+0.16, 7=0.72_+0.22, and v=0.51 0.04 by 
Herrlnann. (7) 

7 Our  value of ~/v for L ~> 16 is larger than the known value. The precise measurement  of ~/v, 
however, require large lattices, since the growth of Cm~x is rather slow. In fact, if we use only 
the data  of L =  36 and 48, we obtain c~/v =0.2(1). 
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inverse of the correlation length, since r itself varies over too wide a range 
in the vicinity of the transition point. 

5.1. Na ive  De f in i t ion  

We first consider the mass gap defined in terms of the unsubtracted 
correlation function C(z) in (10). On an infinite lattice, it is given by 

1 1 
m(T) = - -  l i m  2 l o g  C(z) ( 3 0 )  

r  ~ ~ ~ z 

In the symmetric phase above the transition point T >  Tc, there is a unique 
ground state. The first excited state has a finite energy separation from it, 
and the mass gap defined by (30) represents this energy difference. In the 
broken phase T <  T C, on the other hand, the ground state is threefold 
degenerate, each of which has a nonvanishing expectation value of ( q~ ) .  
The mass gap m v= ~ vanishes in this case. The difference between a first- 
and a second-order transition is seen in the behavior of mv=~(T) as T 
decreases toward Tc in the symmetric phase. It is expected to remain finite 
for a first-order case, whereas it vanishes as mv._~(T)~(T-Tc )  v for 
second-order transitions. 

Let us recapitulate how these infinite-volume behaviors are modified 
on a finite lattice size. For a first-order transition (18'32) the symmetric and 
the broken ground-state levels at infinite volume cross each other at 
T = To. On a finite volume, the tunneling close to Tc mixes these levels and 
results in a small but finite energy gap between the lowest and the next- 
lowest levels at T ~  T~. The large-distance behavior of the unsubtracted 
correlation function C(z) close to Tc is dominated by this gap and therefore 
the mass gap my(T) extracted from it by the modification of (30) 
appropriate for a finite volume varies continuously across T~. Away from 
To, the tunneling becomes increasingly rare and my(T) for sufficiently 
large V will approach the infinite-volume values. With an increasing 
volume V the tunneling occurs only in a narrower range of T around Tc. 
We therefore expect that a family of functions m=mv(T)  shows an 
increasingly sharper rise around the transition point as V increases, 
eventually becoming discontinuous at V =  oo. This means that the curves of 
my(T) for different V cross each other at a volume-dependent value 
T~v (V); m v(T)  should increase with V for T > Tc~(V), while it decreases for 
T< Tc~( V ). 

This interesting behavior is contrasted with the second-order case for 
which the infinite-volume mass gap vanishes as mv=~(T)~ (T-T~)  ~ for 
T~> T c and stays zero for T~< T~. There we expect for V-~ oo a smooth 
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approach to this function from above. The curves of rnv(T ) for different V 
will not cross. 

We applied the spectral density method to calculate the zero-momentum 
projected correlation function for continuous values of/3. We then fit C(z) 
with the hyperbolic cosine form 

C(z)= A cosh m (z - L )  (31) 

with the fitting range Zmi . <<. Z <<. L/2. We used Zm,n = 4, since stable results 
were obtained for Zm,n ~> 4. Figure 17 shows a typical example of C(z) with 
the solid line representing the hyperbolic cosine fit. To demonstrate the 
effectiveness of the spectral density method, we compare the result of this 
method for the mass gap my(T) calculated with the data at flo = 0.3670 on 
a 483 lattice to the value of ref. 10 evaluated by the direct simulation at 
each T. The result is shown in Fig. 18. We recognize a good agreement 
between the two. The curves in Fig. 19 show the volume dependence of 
m v(T). Apparent in this figure are an increasingly rapid rise of m v(T) with 
increasing V and a crossing of the curves. This behavior is in distinct 
contrast with the mass gap for the three-dimensional Ising model, which we 

I 
I r , , , I ' ~ ; ~ [ l , i ; I ; ' ' ' I E , 

C (z)/C(O) L=48 /90--0.3670 

0.1 

0.01 

0.36600 

0 10 20 30 40 

Fig. 17. Examples of the unsubtracted correlation function C(z) on a 483 lattice obtained by 
the spectra! density method using the data at ,80 = 0.3670 as input. The solid lines represent 
a hyperbolic cosine fit (31) with zm,, = 4. 
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depict in Fig. 20; the curves of mv(T ) approach the asymptotic value 
smoothly from above. This exemplifies clearly the difference between a first- 
and a second-order phase transitions. 

Let us comment on the "critical exponent" for a first-order 
transition. (7'16~ As is clear from the above argument, the correlation length 

becomes very large and it may eventually exceed the lattice size even for 
T >  Tc close to the critical point (see Fig. 19). One cannot parametrize, 
however, this behavior in terms of the critical exponent of the form 
~ t T - T e l  -v, due to the rapid change of the shape of ~v(T) as V varies; 
if one were to extract v from the finite-size behavior, it would vary with the 
size of the lattice. 

5,2. Physical Mass Gap 

By the physical mass gap mphy ~ we mean the energy difference between 
the ground and the first excited states in each phase. Extraction of this 
quantity is quite complicated on a finite lattice due to the mixing of levels 
through tunneling. It is, in principle, possible to extract mphy s of each phase 
by adding subdominant terms in (31). Attempts were made in refs. 17 and 
33 for the Ising model in two and four dimensions and in ref. 10 for the 
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Fig. 20. Mass gap for the Ising model as a function of T for various lattice sizes. The solid 
lines are an interpolation of the data points by the spectral density method.  The dashed line 
showing my= ~o(T)= 0.748 x ( T - T o )  ~ is an estimate of  the infinite-volume limit obtained by 
using the known values of Tc = 4.51154 and v = 0.629/27~ 
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Potts model. For a first-order phase transition, however, this is quite 
complicated, since one has to extract the physical mass gap, expected to be 
discontinuous at the transition point, from among a multiple of levels 
competing against each other. 

In this paper we take the practical resort of dividing the run showing 
the flipflop behavior into two phases and evaluate mphy s separately for the 
two states. The separation of a run is done by picking the sweep interval 
by an inspection of the time history of the order parameter. For L = 64, we 
can use four runs with 1 x 106 sweeps, since they do not exhibit a flipflop. 
For L = 48, we discarded a few thousand sweeps on both sides of the interval 
where the system flipped from one phase to the other. It is difficult, 
however, to apply this method to smaller lattices due to a short flipflop 
interval and large fluctuations. 

To extract mphy s for the symmetry-broken (ordered) phase, we used 
the form 

C(z) = ( ~l ) 2 + A cosh mphss (z - L )  (32) 

while for the symmetric phase we assumed a function of the form (31). 
In Fig. 21 we give the physical mass gap mphy s a s  a function of T in 

the vicinity of the transition point. We observe that the value of the physical 
mass gap does not depend on the lattice size. mphy s stays at a finite value 
and is discontinuous at T =  T,.. The magnitude of mphy~ is about 0.1, in 
agreement with the value reported in refs. 10 and 11. 

6. C O N C L U S I O N  

In this paper we have studied the finite-size behavior of the thermo- 
dynamic quantities and the correlation length of the three-state Ports model 
in three dimensions, with a comparative study of the three-dimensional 
Ising model in addition. We found that the Ports model exhibits the finite- 
size behavior most typical of a first-order phase transition, and we did not 
detect any sign of criticality, though the physical correlation length 
becomes somewhat large at the transition point. Specifically we observed: 

(i) Quantities characterizing fluctuations, i.e., specific heat and 
magnetic susceptibilities, show a finite-size scaling which depends only 
linearly on the volume. 

(ii) The correlation length extracted from the unsubtracted correla- 
tion function shows a finite-size behavior characteristic of a first-order 
transition, i.e., the step-function-type singularity is developed as V-~ or. 

822/59/5-6-22 
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(iii) The physical correlation length stays at a finite value and is 
discontinuous at the transition point. 

The present analysis has shown that the finite-size scaling test is a very 
powerful tool to determine the order of a phase transition even for a rather 
subtle case without subjective elements coming into the judgment. 
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